Flexibility of bacterial flagella in external shear results in complex swimming trajectories.
نویسندگان
چکیده
Many bacteria use rotating helical flagella in swimming motility. In the search for food or migration towards a new habitat, bacteria occasionally unbundle their flagellar filaments and tumble, leading to an abrupt change in direction. Flexible flagella can also be easily deformed by external shear flow, leading to complex bacterial trajectories. Here, we examine the effects of flagella flexibility on the navigation of bacteria in two fundamental shear flows: planar shear and Poiseuille flow realized in long channels. On the basis of slender body elastodynamics and numerical analysis, we discovered a variety of non-trivial effects stemming from the interplay of self-propulsion, elasticity and shear-induced flagellar bending. We show that in planar shear flow the bacteria execute periodic motion, whereas in Poiseuille flow, they migrate towards the centre of the channel or converge towards a limit cycle. We also find that even a small amount of random reorientation can induce a strong response of bacteria, leading to overall non-periodic trajectories. Our findings exemplify the sensitive role of flagellar flexibility and shed new light on the navigation of bacteria in complex shear flows.
منابع مشابه
Noninvasive inference of the molecular chemotactic response using bacterial trajectories.
The quality of sensing and response to external stimuli constitutes a basic element in the selective performance of living organisms. Here we consider the response of Escherichia coli to chemical stimuli. For moderate amplitudes, the bacterial response to generic profiles of sensed chemicals is reconstructed from its response function to an impulse, which then controls the efficiency of bacteri...
متن کاملNumerical modelling of chirality-induced bi-directional swimming of artificial flagella.
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chir...
متن کاملSucceed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface
Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation...
متن کاملLiving liquid crystals.
Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that comb...
متن کاملBeat regulation in twisted axonemes
Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms the activities of the dyneins must be coordinated. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 12 102 شماره
صفحات -
تاریخ انتشار 2015